
The RAMP Architecture & Description Language

Greg Gibeling, Andrew Schultz & Krste Asanović
RAMP Gateware Group, UC Berkeley & MIT CSAIL

{gdgib & alschult}@eecs.berkeley.edu, krste@csail.mit.edu

January 17, 2006

1 Introduction

The RAMP (Research Accelerator for Multiproces-
sors) project is developing infrastructure to sup-
port high-speed emulation of large scale, massively
parallel multiprocessor systems using FPGA plat-
forms. In this paper, we describe our proposal
for a RAMP Design Framework (RDF), which has
a number of challenging goals. The framework
must support both cycle-accurate emulation of de-
tailed parameterized machine models and rapid
functional-only emulations. The framework should
hide changes in the underlying RAMP hardware
from the module designer as much as possible, to
allow groups with different hardware configurations
to share designs and to allow RAMP modules to be
reused in subsequent hardware revisions. In addi-
tion, the framework should not dictate the hard-
ware design language chosen by developers.

Our approach was to develop a decoupled ma-
chine model and design discipline, together with
an accompanying RAMP Description Language
(RDL) and compiler to automate the difficult task
of providing cycle-accurate emulation of distributed
communicating components.

2 RDF Overview

A configured RAMP system models a collection of
CPUs connected to form a cache-coherent multipro-
cessor. The emulated machine is called the target,
and underlying FPGA hardware (e.g. BEE2) is the
host. The RAMP design framework is based on a
few central concepts. A RAMP configuration is a
collection of loosely coupled units communicating
with latency-insensitive protocols over well-defined
channels. Figure 1 gives a simple schematic ex-
ample of two connected units. In practice, a unit
will be a large component corresponding to tens of
thousands of gates of hardware, e.g., a processor
with L1 cache, a DRAM controller, or a network
router stage. All communication between units is
via messages sent over unidirectional point-to-point

inter-unit channels, where each channel is buffered
to allow units to execute decoupled from each other.

Each unit has a single clock domain. The target
clock rate of a unit is the relative rate at which it
runs in the target system. For example, the CPUs
will usually have the highest target clock rate and
all the other units will have some rational divisor of
the target CPU clock rate (e.g., the L2 cache might
run at half the CPU clock rate). The physical clock
rate of a unit is the rate at which the FPGA host
implementation is clocked. In some cases, a unit
might use multiple physical clock cycles to emulate
one target clock cycle, or even require a varying
number of physical clock cycles to emulate one tar-
get clock cycle. At least initially, we expect that
the whole RAMP system will have the same phys-
ical clock rate (nominally around 100 MHz), per-
haps with some higher physical clock rates in I/O
drivers.

All channels are unidirectional and strictly point-
to-point between two units. The two units at each
end of a channel can have different target clock
rates, but, at least for the initial RAMP standard,
must have the same physical clock rate. Units are
only synchronized via the point-to-point channels.
The basic principle is that a unit cannot advance
by a target clock cycle until it has received a tar-
get clock cycle’s worth of activity on each input
channel and the output channels are ready to re-
ceive another target cycle’s worth of activity. This
scheme forms a distributed concurrent event sim-
ulator, where the buffering in the channels allows
units to run at varying physical speeds on the host
while remaining logically synchronized in terms of
target clock cycles.

Unit designers must produce the RTL code of
each unit in their chosen hardware design lan-
guage or RTL generation framework, and specify
the range of message sizes that each input or output
channel can carry. For each supported hardware de-
sign language, the RAMP framework provides tools
to automatically generate a unit wrapper (see fol-
lowing Section) that interfaces to the channels and

1

Figure 1 Basic RAMP communication model.

������� ����	
	����	�����	����	�

����

����

provides target cycle synchronization. The RTL
code for the channels is generated automatically by
the RDL compiler from an RDL description, which
includes a structural netlist specifying the instances
of each unit and how they are connected by chan-
nels.

The benefit of enforcing a standard channel-
based communication strategy between units is
that many features can be provided automatically.
Users can vary the target latency, target band-
width, and target buffering on each channel at con-
figuration time. The RAMP configuration tools will
also provide the option to have channels run as fast
as the underlying physical hardware will allow to
support fast functional-only emulation.

We are also exploring the option of allowing
these parameters to be changed dynamically at
target system boot time to avoid re-running the
FPGA tools when varying parameters for perfor-
mance studies. The configuration tool will build in
support to allow inter-unit channels to be tapped
and controlled to provide monitoring and debug-
ging facilities. For example, by controlling stall sig-
nals from the channels, a unit can be single stepped.
Using a separate automatically-inserted debugging
network, invisible to target system software, mes-
sages can be inserted and read out from the chan-
nels entering and leaving any unit.

A higher-level aspect of the RAMP design dis-
cipline is that the operation of a unit cannot de-
pend on the absolute or relative latency of mes-
sages between units (i.e., all inter-unit communi-
cation must be latency insensitive). We do not
believe this unnaturally constricts unit design, as
latency-insensitive protocols are commonly used in
real hardware systems. We emphasize that units
are intended to represent large pieces of a design
and that it is not intended that channels will be
used at a fine-grain, such as within a CPU. Any
rigid pipeline timing dependencies must be con-
tained within a unit. For example, primary caches
will usually be implemented as part of a CPU unit.

Figure 2 Target-level unit interface.

����

�����	
�

��
�����

��
�� ���

�����	��

�

�������

��������

�����	��

�

�������

��������

���

��

���

������� ������

3 Implementation Details

3.1 Unit Interface

Figure 2 shows the interfaces a RAMP unit must
support. Ports comprise the input and output in-
terfaces between units and each port is connected to
another port via a channel. The example unit has
two input ports (A & B), and one output port (C).
In addition to the ports there are two connections:
Start, which is used to trigger the unit to per-

form one target clock cycle’s worth of action, and
Done, which is used to report back to the harness

when the unit has completed the target clock cycle.
While the ports in the example have a simple fixed
message size, the RDL compiler supports complex
messages through structures and tagged unions. By
automatically building the support machinery (be
it hardware or software) to marshall and transport
complex messages, the compiler automates a large
and tedious part of the emulation design process.

As the figure shows, each port has a FIFO-style
interface, which provides a natural match to the

2

Figure 3 Channel model with parameters.

�������

��	��	 ��	

�����

���������

�
��
�
��
��

channel semantics as described in detail in Sec-
tion 3.2. Input messages are consumed by asserting
the appropriate Xxx READ when the associated
Xxx READY is asserted. Similarly output messages

are produced by asserting Xxx WRITE, when the
associated Xxx READY is asserted. It should be
noted that while the above description referred to
“signals,” which can be “asserted,” these constructs
can just as easily be represented in software.

We use the term inside edge to refer to the in-
terface shown in Figure 2, the goal of which is to de-
couple the implementation of the unit from the rest
of the target (and host) system as much as possible.
Currently a complete decoupling is impossible due
to the limitaton that the number and types of the
ports (see Section 3.2) must be statically assigned
to each unit at design time. However it is our hope
that parameterization, polymorphism and optional
port connections will, in the future, improve design
flexibility.

3.2 Channel Model

The key to inter-unit communication lies in the
channel model, which, along with the inside edge
interface, forms the core of the target model. The
channel model can be quickly summarized as loss-
less, strictly typed, point-to-point, and unidirec-
tional with ordered delivery. This should be in-
tuitively viewed as being similar to a FIFO with
a single input and output, which carries strictly
typed messages. This section expands the above
description with the timing parameters necessary
for timing-accurate simulations.

There are three parameters associated with every
channel: bitwidth, latency and buffering, as il-
lustrated in Figure 3. The bitwidth of a channel
(the number of bits it can carry per target cycle) is
the size of a fragment. Latency is the minimum
number of target cycles which a fragment must take
to traverse the channel.

A message in RAMP is the unit of data carried

between units, however to perform cycle-accurate
simulations, messages may be split into fragments.
Figure 4 illustrates the difference between a mes-
sage and fragment. The channel carries exactly zero
or one 8-bit fragments on each target cycle, but the
units wish to communicate using 40-bit messages.
Therefore the messages must be split into five 8-
bit fragments for transport over the channel at a
rate of one fragment per target cycle. This means
that the sending unit may send at most one 40-bit
message every five target cycles.

Of course, the inverse example is equally valid:
a message may be smaller than the fragment size
of the channel. In this case a message may be sent
on every target cycle. However, a channel can only
carry zero or one fragments per target cycle, which
means a channel cannot carry more than one mes-
sage per target cycle.

Fragmentation allows RAMP to decouple the size
of messages, which is a characteristic of a unit de-
sign, from the size of data moving through the chan-
nels. This simplifies experimentation with varying
target channel bandwidths, as target channel band-
widths can be modified without changing the target
unit design.

The final channel parameter, buffering, is then
defined as the number of fragments which the
sender may send before receiving any acknowledge-
ment of reception (as in a credit-based flow-control
scheme). In general, a channel which must support
maximum-bandwidth communications will require
buffering ≥ 2 ∗ latency to tolerate the latency in
both directions: the data transfer (fragments mov-
ing forward), and the handshaking (credits mov-
ing backward). At startup, the sending unit will
be given a number of credits equal to the buffer-
ing capacity of the channel, thereby allowing it
to send that many fragments prior to the receipt
of any additional credits. The cost of latency cy-
cles for transfer in either direction is the reason for
the buffering ≥ 2 ∗ latency to achieve bandwidth =
bitwidth.

3

Figure 4 Message fragmentation and target cycles.

�� ��

�������

	�
���������������������

��

��

��

��

������������

������������

Program 1 A 32bit Up/Down counter in RDL.

unit {
input bit [1] UpDown;
output bit [3 2] Count ;

} Counter ;
unit {

instance IO : : SwIn UserIn
(Value (InChannel)) ;

instance Counter Counter
(UpDown(InChannel) ,
Count (OutChannel)) ;

instance IO : : LEDOut UserOut
(Value (OutChannel)) ;

channel f i fopipe [1 , 1 , 1]
InChannel ;

channel f i fopipe [3 2 , 1 , 1]
OutChannel ;

} CounterExample ;

4 RDL

We have developed the RAMP Description Lan-
guage or RDL (pronounced “riddle”) to allow a
standard representation of RAMP designs, thereby
easing all aspects of developement, and collabora-
tion in particular. RDL is, in essence, a hierarchi-
cal netlisting language. The behavior of leaf units
is given separately in a host specific language such
as Verilog, VHDL, Bluespec, C, C++, or Java.

Program 1 is a very simple fragment of RDL for
an up/down counter, and it’s instantiation in a sim-
ple test. At the time of this writing, we have com-
pleted the implementation of the RDL compiler,
and this simple example to the point of having a
working demo running on a Xilinx FPGA, using
switches and LEDs for I/O.

While this is an extremely simplistic example,
and much smaller than a typical unit, it illus-
trates the basics of RDL. The :: Counter is de-
clared to accept unstructured 1-bit messages at
its port “UpDown” (:: Counter.UpDown) and pro-

duce 32-bit messages at its output port “Count”
(:: Counter.Count). Of course this is a leaf unit,
which will be implemented directly in the host lan-
guage (Verilog, Java or C for example).

RDL and the compiler also support hierarchically
defined units like “CounterExample” in this code
fragment. Inside this unit, there are two channels,
shown with detailed timing models, which are used
to connect the three unit instances. Note the use
of named port connections similar to Verilog. Posi-
tional and explicit port specification is allowed, in-
cluding the ability to specify connection of a local
channel to a port significantly lower in the hierar-
chy, without explicit pass-through connections at
each level.

RDL also supports declarations for host plat-
forms (eg. an FPGA board or computer with spe-
cific I/Os) and mappings of a top-level unit onto
a platform. Platform declarations include the lan-
guage (e.g., Verilog or Java) to generate and the
specific facilities available for implementing chan-
nels on the host. The back end of the compiler
is easily extensible to support new languages, and
new host implementations.

A mapping from a unit to a platform may also
include more detailed mappings to specify the ex-
act implemention of each channel. The compiler
can take just such a mapping and produce all of
the necessary output to instantiate and connect the
various leaf units, which have been implemented in
the host language.

5 Status & Future Work

The RDL compiler has been completed and is
fully documented. The RAMP description lan-
guage and the RDL compiler are stable, with
working examples, and are ready for research use.
Timing-accurate simulations have been mostly im-
plemented, but remain untested. In the future we
will be working to expand RDL and the RDL com-
piler to work with a wider variety of platforms and
to more concisely describe very complex systems.

4

	Introduction
	RDF Overview
	Implementation Details
	Unit Interface
	Channel Model

	RDL
	Status & Future Work

