The IBM/MIT PowerPC Project

IBM: Kattamuri Ekanadham, Nancy Greco, Pratap Pattnaik, Jessica Tseng
T. J. Watson Research Center, Yorktown Heights, NY

MIT: Arvind, Asif Khan, Murali Vijayaraghavan, Alessandro Yamhure
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA
PowerPC Architecture Spans Wide Range of Markets

- embedded systems
- game consoles
- servers
- journey to mars
- automotives
- cell broadband engine
- super computers (BG/L)
Provide Flexible Support Structures For Software

- Large Page Sizes
- Multi-Threading
- Sophisticated Cache Protocols
- Virtualization Support
Our Research Goal and Vision

- **Goal:**
 - Promote Power architecture as building block for a wide range of systems and find innovative ways to extend Power architecture with accelerator for specific applications.

- **Vision:**
 - Create an ecosystem to foster Power architecture and ease of its use for system research by the community.
The Basic PowerPC Processor Model

- **Simple in-order pipeline, with standard PowerPC ISA.**

- **Some requirements:**

 - Support for multiple threads per core.
 - Support for multiple cores with shared caches in a node.
 - Support for address translation with variable page sizes.
 - Support for coherency and synchronization across nodes.

- **Challenges:**

 - Facilitate architectural exploration → **Parameterization & Flexibility.**
 - *Implement it in one year with a small group of researchers.*

 (Began September 2007)
Methodology and Tools

- Use a high-level hardware description language, Bluespec SystemVerilog (BSV), to create a construct that enables rapid changes to microarchitectures and evaluate their effectiveness for various system and application.

 - Designed a generic abstraction that controls stages unaware of the number or nature of component stages.

 - Each stage can be designed independently.
 - Stages can be added and removed in a very flexible manner.

 - Pipeline is a vector of stages through which packets of certain type flow.

 - Packet contains information on instruction’s operation and its thread.
 - Stage represents operation to be performed on the instruction and could result in status change of the thread.

- Use Xilinx environment to further synthesize the Bluespec generated verilog code onto FPGAs (i.e. Virtex5 LX330) for real-time evaluation and simulation.
Current Project Status

- Wrote 10 thousand lines of BSV code
 - 68 thousand lines of Verilog code
 - 16 thousand slices (30% of available resource of Virtex5 LX330) [note: without any kind of optimizations]

- Successfully ran 2.9 millions of Linux boot-up instructions after loading on the C simulation environment of Bluespec.

- Successfully integrated the L1 cache model to the processor core and continue on the L2 cache integration.

- Investigate the processor stall issues when running on the FPGA platform.
Acknowledgements

- **Linux OS Bring-up Team**
 - Hubertus Franke
 - Jimi Xenidis

- **FPGA Prototyping Team**
 - Richard Kaufman
 - Caleb Leak
 - Kai Schleupen
Thank you!