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ABSTRACT
We are developing a set of reusable design blocks and

several prototype systems for emulation of multi-core archi-

tectures in FPGAs. RAMP Blue is the first of these pro-

totypes and was designed to emulate a distributed-memory

message-passing architecture. The system consists of 768–

1008 MicroBlaze cores in 64–84 Virtex-II Pro 70 FPGAs

on 16–21 BEE2 boards, surpassing the milestone of 1000

cores in a standard 42U rack. An architecture based on

point-to-point channels and switches using a combination

of custom and generic hardware provides the functionality.

Virtual-cut-through dimensional routing on one of two hy-

brid topologies with virtual channels provides the connectiv-

ity. A control network with a tree topology provides man-

agement and debugging capabilities. A software infrastruc-

ture consisting of GCC, uClinux and UPC allows running

off-the-shelf applications and scientific benchmarks. Initial

performance is encouraging for emulation purposes. In this

paper we report on the design and implementation of RAMP

Blue and discuss our experiences and lessons learned.

1. INTRODUCTION

Research Accelerator for Multiple Processors (RAMP) is

a multi-university project intended to define and create the

next generation of tools for computer-architecture and com-

puter-science research [1]. RAMP seeks to leverage the high

degree of parallelism and density scaling afforded by mod-

ern FPGAs to emulate existing and new highly parallel com-

puter systems.

The first large scale system built as a demonstrator and

test system for RAMP is RAMP Blue. The goal of the

RAMP Blue project was to build a cluster of 256–1024 sim-

ple processors capable of running off-the-shelf message pass-

ing applications and scientific benchmarks. The processor

nodes are instantiated within the FPGAs of a BEE2 (Berke-

ley Emulation Engine 2) cluster and communicate via a cus-

tom network.

RAMP Blue is a demonstrator system, designed to move

forward the development of critical RAMP infrastructure

and provide insight into the problems with and limits of

FPGA emulation of massively parallel multi-core architec-

tures [2]. In this paper we summarize the design and imple-

mentation of RAMP Blue and document some critical BEE2

infrastructure shared by RAMP Blue and other applications.

Section 2 documents the gateware1 and software infras-

tructure developed for the BEE2. Section 3 describes the

design and architecture of RAMP Blue. Section 4 describes

the implementation and status of RAMP Blue. Section 5

concludes and discusses future work.

2. BERKELEY EMULATION ENGINE 2

The BEE2 is a second-generation FPGA board developed

at the Berkeley Wireless Research Center (BWRC) and was

designed for a broad range of applications, including real-

time DSP, scientific computing and high-performance re-

configurable computing [3]. This broad domain is reflected

in the BEE2’s architecture, shown in Figure 1.

Fig. 1. General architecture of BEE2 module.

The BEE2 contains five Xilinx Virtex-II Pro 70 FPGAs,

1The term “gateware” refers to design files, typically written in a hard-

ware description language, such as Verilog or VHDL, that instantiate hard-

ware circuits within the FPGA.
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the latest devices available at design time, each containing

two PowerPC 405 hard cores and connected to four inde-

pendent 72-bit DDR2 banks, capable of a peak throughput

of 3.4 GBps. The four “user” FPGAs, are connected in a 5

GBps ring. The fifth, “control” FPGA, is connected in a 2.5

GBps star with the user FPGAs. The control and user FP-

GAs have two and four 10 Gbps high-speed serial I/O links

off-board, respectively. These serial links run to 10GBASE-

CX4 connectors, which allow Infiniband, 10 Gb Ethernet or

XAUI (Ten-gigabit Attachment Unit Interface) connections

over fiber or copper. Finally, a robust set of peripherals, in-

cluding RS232 and Ethernet transceivers, are connected to

the control FPGA, allowing the BEE2 to run Linux.

BEE2 designs can leverage many existing IP cores for

common peripherals; however, there are several unique char-

acteristics of the BEE2 that necessitated the design of cus-

tom gateware and software as described below.

2.1. Gateware

The most complicated and vital piece of gateware is the

DDR2 memory controller. At the lowest level each DIMM

has a heavily pipelined independent controller supporting

simple bank management. In front of the low-level con-

troller is the user memory interface, a common interface

acceptable to a wide variety of BEE2 users. The interface

is implemented as a set of asynchronous command and data

FIFOs that provide buffering and decouple the user clock

domain from the 180 MHz DDR2 clock domain. A switch

multiplexes multiple copies of this interface using a simple

round-robin priority scheme to allow different user logic to

share the same DIMM.

2.2. Bootstrapping and Configuration

The control and user FPGAs on the BEE2 play slightly dif-

ferent roles. The control FPGA is connected to peripherals,

as well as to the Xilinx SelectMAP interface on the user FP-

GAs, giving it the ability to configure and read the status

of the user FPGAs. The SelectMAP interface can then be

reused as FIFO-based GPIO between the control and user

FPGAs. One of the PowerPC cores in the control FPGA

runs Debian GNU/Linux, allowing users to interact with the

board and use existing software and drivers.

2.3. Off Board Communication

The BEE2 was designed to operate in clusters by using the

high-speed serial links formed by bonding four of the Xil-

inx Multi-Gigabit Transceivers (MGT) to form a 10 Gbps

full-duplex communication link. XAUI, a standard layer-1

point-to-point protocol, was chosen as the underlying proto-

col because it provides an upgrade path to 10 Gb Ethernet.

Our XAUI block guarantees that no data will be lost on the

link, except when the link state changes, e.g., a cable is un-

plugged. Error correction is left to the user logic. In lab

tests, the error rate over a stable link was found to be 10−16

to 10−10 bps.

3. RAMP BLUE DESIGN AND ARCHITECTURE

RAMP Blue is a message-passing multi-processor built from

768–1008 soft cores instantiated on a cluster of 16–21 BEE2

boards. RAMP Blue is intended to demonstrate the first

large multi-board system using BEE2 boards and to experi-

ment with the limits of soft-core designs.

3.1. High-Level Design

The primary design choices for this project included the soft

CPU core, I/O interfaces, network topology, FPGA plat-

form, memory allocation, operating system, and tool set.

The remainder of this section will examine each of these

choices.

3.1.1. Processor and I/O Interfaces Selection

The processor selection was significantly eased by the lack

of feasible options, with the Xilinx MicroBlaze [4] being

the only viable soft core for this project. MicroBlaze is a

RISC processor optimized for implementation in Xilinx FP-

GAs and having a basic 32-bit ISA, a three-stage pipeline, a

32-word register file, and a Harvard-style direct-mapped L1

cache with configurable size. The core can be customized to

include a single-precision FPU that shares the existing reg-

ister file, a hardware multiplier, divider and barrel shifter,

several CISC instructions, and several exceptions.

MicroBlaze also has considerable software support avail-

able, including a GCC backend and a port of uClinux [5].

Access to this infrastructure was essential to meeting the

goal of running off-the-shelf code and benchmarks.

The MicroBlaze supports several interfaces including the

IBM CoreConnect On-chip Peripheral Bus (OPB), Xilinx

Local Memory Bus (LMB), Xilinx CacheLink (XCL), and

Xilinx Fast Simplex Link (FSL). The FSL is a simple FIFO-

like interface that provides unidirectional point-to-point con-

nections. In our design, the FSL is used for the majority of

the peripherals, though the LMB and the OPB are required

for the dedicated block RAM, and the interrupt controller

and timer, respectively. The use of the FSL was motivated

by its point-to-point nature, which helped fit the system into

the RAMP Description Language (RDL) [6] for research

and debugging purposes.

3.1.2. FPGA Allocation

Although the BEE2 has five FPGAs per board, the control

FPGA is already responsible for running Linux, configur-
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ing the user FPGAs and providing debugging and monitor-

ing support. The gateware required does not use all the re-

sources of the control FPGA; nonetheless, we limited the

soft cores to the user FPGAs in order to save on bitstream-

generation time. The place-and-route cycle on a highly uti-

lized Virtex-II Pro 70 design can take 3–30 hours on the

fastest available machines. Maintaining separate bitstreams

would greatly increase the implementation and testing times.

3.1.3. Cluster Topology Selection

Board-to-board connections use copper 10GBASE-CX4 ca-

bles, which provide full-duplex 10 Gbps links between FP-

GAs. Despite the high bandwidth, the latency of these links

(tens to hundreds of cycles) is large compared to that of

intra-board LVCMOS links (two to three cycles).

For 16 BEE2 modules, we use an all-to-all topology,

with each module having one high-speed serial connection

to each other module as shown in Figure 2 (a). This topology

minimizes the number of inter-board links along any com-

munication path, optimizing latency and reliability, with the

path from one soft core to another containing at most four

intra-board (two on each board) and one inter-board link.

The FPGA and port assignments are rotated in order to use

only vertical cables. Unfortunately, this topology does not

scale beyond 17 modules without the control FPGA due to

port limitations.

For 18–21 modules, we use a 3D-mesh topology, shown

in Figure 2 (b). The FPGA and port assignments are again

rotated in order to fit within the constraints of the rack and

use only vertical cables.

3.1.4. Memory Allocation

Since RAMP Blue is a message-passing architecture, a sim-

ple static partitioning of the available physical memory is

sufficient. We currently instantiate 12 MicroBlaze cores per

user FPGA using three of the four DDR2 DIMMs, resulting

in four cores per 1 GB DIMM, each using a quarter of the

memory—256 MB per core.

Four processor cores share a DRAM channel through a

common bus and controller as shown in Figure 3. Although

the high degree of memory-channel sharing in conjunction

with small L1 caches can lead to inefficient DRAM usage,

the banked design of DDR2 chips ensures that each core

has its own memory bank, dramatically reducing memory-

access conflicts. Furthermore, the low speed of the MicroB-

laze cores relative to the 180 MHz DDR2 memory helps

eliminate memory contention.

3.1.5. Operating System, Compiler and Applications

Each MicroBlaze core runs its own instance of uClinux. The

choice of uClinux and GCC is natural given the goal of

(a) Rotated all-to-all

(b) Folded 3D mesh

Fig. 2. Possible cluster topologies. Rows and columns cor-

respond to boards and ports, respectively.
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Fig. 3. Memory-system access from MicroBlaze cores.

56



running off-the-shelf applications. uClinux is a fork of the

Linux kernel designed for microcontrollers without MMUs,

a basic requirement of the Linux kernel. As a result, uClinux

does not provide virtual memory or protection. However, al-

most all of the kernel support for device drivers, networking

and file systems is available under uClinux. The POSIX API

is fully supported with the exception of the fork system call.

An extensive user application and library distribution is also

available. Both the kernel and the user applications build

using the GCC MicroBlaze backend provided by the open-

source community.

To meet our goal of running scientific benchmarks, we

selected the NAS Parallel Benchmarks (NPB) suite [7] im-

plemented in the Unified Parallel C (UPC) framework [8].

We chose the UPC version, rather than the the more common

MPI version, because UPC is both higher-level and higher-

performance than MPI in most cases. Additionally, our UPC

implementation was developed at UC Berkeley, making the

authors available for consultation.

3.2. Architecture and Memory

Figure 4 shows the top-level gateware architecture of a sin-

gle MicroBlaze node, around which RAMP Blue was de-

signed.
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Fig. 4. Architecture of single node of RAMP Blue.

The RAMP Blue memory system was designed to reuse

existing BEE2 infrastructure described in Section 2 while

sharing the DIMMs between cores as shown in Figure 3.

Low-level access is provided by the existing DDR2 con-

troller and asynchronous command FIFO, while high-level

access is provided by a parametrized memory arbiter sup-

porting the XCL cache transaction protocol. A set of tag

FIFOs alongside the memory datapath allow read responses

to be matched to the requesting processor cores.

The memory is divided by address, with the bank por-

tion of the address statically parametrized by the core index,

allowing each core to execute exactly the same code with-

out interference. Since the XCL interface cannot be used

when caches are disabled, each core is also connected us-

ing an LMB to a block RAM containing the boot and cache

invalidation code that executes with caches disabled.

3.3. Console and Control Network

Each core must receive its code, data and user input over a

channel accessible through Linux on the control FPGA. In

our implementation, the physical layer for this channel can

be either the SelectMAP data bus or the LVCMOS inter-chip

link, with RAMP Blue using the latter due to much higher

bandwidth.

Control

FPGA

User

FPGA

Serialize/

Deserialize

MB MB MB MB

Serialize/

Deserialize

FSL Switch

FSL Switch

OPB FIFO

PPC

Fig. 5. Architecture of general-purpose control channel.

Figure 5 shows the gateware comprising the control chan-

nel. On the control FPGA, the OPB FIFO block provides a

link between the PowerPC and a configurable number of FI-

FOs using a memory-mapped interface. On the other side

of this block, the FIFOs export an FSL interface, allowing

them to be connected to MicroBlaze cores through matching

FSL switches and serializer/deserializer (SERDES) blocks

on either side of the LVCMOS link. The SERDES blocks

convert the data to and from a configurable width and trans-

fer it across the inter-chip link using conservative signaling,

while the switches ensure delivery to and from the appropri-

ate port.

There are two abstractions on top of the control chan-

nel: a serial console allowing the control FPGA to monitor

boot messages and a network interface providing standard

network services, such as NFS and TELNET.

3.4. Debugging Interface

Each Xilinx FPGA has an internal JTAG chain, which can

be accessed via the FPGA fabric to perform in-circuit debug-

ging. Two forms of hardware debugging are implemented in
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RAMP Blue, both of which use the JTAG port, making them

mutually exclusive.

The first form uses the Xilinx Microprocessor Debug

Module (MDM) and the Xilinx Microprocessor Debugger

(XMD), which allow the user to access the MicroBlaze reg-

isters and memory and set breakpoints, as well as to connect

with GDB to perform full remote debugging.

The second form uses the Xilinx ChipScope in-circuit

logic analyzer to capture traces of arbitrary signals. Addi-

tional trace buffers interface between each MicroBlaze and

the corresponding ChipScope unit, capturing traces of events

occurring prior to connecting with ChipScope.

3.5. MicroBlaze Network

In RAMP Blue, messages are passed along a custom net-

work composed of intra-FPGA, intra-BEE2 and inter-BEE2

links. The high-level design choices listed below were made

to simplify the network design and implementation.

• Routing: Packets are statically (non-adaptively) source

routed at each hop in the network, with broadcast not

supported.

• Topology: Chip-level crossbar embedded in a board-

level mesh embedded in a system-level all-to-all graph

or chip-level crossbar embedded in a system-level 3D

mesh.

• Packet Format: The gateware is oblivious to packet for-

mat except for the route header, added by the source

and stripped by the packet buffers. For compatibility,

the packet format is Ethernet II encapsulated in a small

amount of control information.

• Delivery Guarantees: Delivery is guaranteed end-to-

end in software. The gateware does not perform check-

summing or retransmission.

• Flow Control: Virtual cut-through, blocking only if the

next buffer is not available.

3.5.1. Network Gateware

The switch is designed as the composition of two simple el-

ements: the buffer unit and the crossbar switch. Buffer units

store a single packet at each hop in the network and make re-

quests to the switch for the next hop. Each buffer unit uses a

single block RAM to provide buffering for an MTU of up to

2048 bytes and exposes FSL read and write interfaces with

additional signals used for arbitration. Packets are marked

with start and end control bits, allowing for error tolerance.

The crossbar switch unit is fully parametrized in the num-

ber of ports, and data width and latency. Changing the data

width trades performance for resource usage, allowing for

overall performance optimization or acceleration of the place-

and-route cycle. For each output buffer unit, the switch

arbitrates among the inputs requesting that output using a

starvation-free round-robin policy. Once an input has won

the arbitration, it transmits the entire packet.

3.5.2. MicroBlaze Interface

For each MicroBlaze core, the network exposes an FSL in-

terface. Packets are transmitted by first testing whether the

buffer unit is available with a non-blocking FSL write and

then copying the remainder of the packet without blocking.

When a packet is available for receiving, the buffer generates

an interrupt, instructing the MicroBlaze to copy the packet

using a series of FSL reads. This interface is both simple

and low-performance. A future design using a small DMA

engine should greatly improve the performance of the entire

RAMP Blue system.

The network driver is almost exactly the same as the

driver used for the control-network link. The driver pro-

vides an Ethernet-device abstraction to the operating system,

prepending the source route before transmission. The source

routes are computed in a distributed manner and sent to the

driver using custom ioctl system calls by a parametrized

network-setup program that runs on each node at boot time.

The routes are thus static and not adaptive to total link fail-

ure, such as a cable being unplugged.

3.5.3. FPGA to FPGA Communication

As Figure 6 shows, intra-BEE2 and inter-BEE2 communica-

tion reuses the buffer and switch units. For each off-FPGA

link, there is a pair of buffer units that act as a proxy for

that link, interacting directly across the link without an in-

termediate switch. These buffer units interface to the switch

on their FPGA, allowing incoming packets to be routed di-

rectly to a MicroBlaze on that FPGA or across another link.

User FPGA1 XAUI User FPGA2
LVCMOS

Crossbar

Switch

Buffer Unit

Buffer Unit

Buffer Unit

Buffer Unit

Buffer Unit

Buffer Unit

Buffer Unit

Buffer Unit

MicroBlaze MicroBlaze

Board 1

Board 2

User FPGA1

Fig. 6. Example communication using multiple hops

through multiple FPGAs.

3.5.4. Reliability and Deadlock

To simplify the implementation, the amount of error check-

ing in the network is sufficient only to guarantee the proper

operation of the network itself. Bit errors in the route header
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can result in misrouted packets. We rely on deserialization

and next-hop checking to discard such packets in the net-

work and destination checking to discard such packets at the

endpoint. Corrupted start or end bits can also result in dis-

carded packets. The low bit error rates observed in the lab

suggest that these should be relatively rare occurrences.

Multi-processor networks admit the possibility of dead-

lock, which occurs when all buffers in a cycle become full.

With virtual cut-through, a common solution is to partition

the buffers and place a partial ordering on them [9]. Another

popular method is to use virtual channels [10]. In RAMP

blue, the all-to-all topology requires a combination of these

methods to avoid deadlock in all cases. A partial ordering on

the buffers is enforced using dimensional routing, with suf-

ficient dimensions provided by virtual channels. The cost

of this implementation is two additional receive buffers on

the intra-board links out of a total of 38 buffers and a corre-

sponding increase in the crossbar-switch ports.

3.6. Floating Point Unit

Most of the off-the-shelf applications and scientific bench-

marks that we were interested in running on RAMP Blue

require double-precision floating-point arithmetic. MicroB-

laze does not provide a double-precision FPU, and even the

integrated single-precision FPU is too large (1000 slices) to

be instantiated once per core, leading us to a shared double-

precision FPU implementation.

3.6.1. Floating Point Unit Architecture

To avoid the complexity of implementing and verifying an

IEEE-compliant double-precision FPU, the actual arithmetic

core uses the Xilinx LogiCORE floating-point blocks for ad-

dition, multiplication, division, and comparison [11].

The FPU arbitrates among a parametrizable number of

FSL-based MicroBlaze interfaces. Operations are requested

as four 32-bit FSL writes, with the control bits encoding the

operation. A deserializer assembles the two 64-bit operands

and requests the correct functional unit. When access to the

input bus is granted, the operands are transferred into the

functional unit. When the operation is complete, and access

to the output bus is granted, the result is transferred to the

serializer. Two 32-bit FSL reads by the MicroBlaze then re-

turn the 64-bit result. Exceptions are returned as silent NAN

values. Figure 7 shows an overview of this architecture.

The shared FPU also makes sense for reasons other than

resource usage. Given a heavily pipelined FPU and a lightly

pipelined blocking MicroBlaze, providing each core with its

own FPU would vastly underutilize the FPU pipelines. On

the other hand, multiple MicroBlaze cores can take advan-

tage of the FPU pipelining using multi-threading, achieving

high overall utilization of a shared FPU.
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Fig. 7. Shared double-precision FPU architecture.

3.6.2. Compiler Integration

Support for the shared FPU was added to GCC using the

software floating-point library interface. Whenever an FPU

operation is required, the compiler emits code to send the

operands to the FPU and then block until the result comes

back. Blocking is not optimal and does not take advantage of

the available pipelining. However, since the FPU is highly

shared, the added software complexity required to manage

non-blocking execution of operations was deemed unlikely

to greatly improve overall system performance.

4. RAMP BLUE IMPLEMENTATION

RAMP Blue currently comprises 16–21 BEE2 boards, each

with 12 MicroBlaze cores per user FPGA. Thus, 768–1008

cores can be connected in a cluster and can run the NAS

Parallel Benchmarks using UPC. Several key subsystems

were benchmarked independently. As the system is still

in a state of development, these numbers should be con-

sidered a lower bound on performance. Furthermore, since

the primary goal of RAMP Blue is emulation, raw perfor-

mance matters only insofar as it affects emulation perfor-

mance. High-performance architectures can be accurately

emulated by accounting for the difference between the raw

and the emulated clock cycles as described in [6].

4.1. Subsystem Performance

The synthetic Whetstone benchmark showed an FPU per-

formance of 2.5 to 3 MFLOPS, corresponding to an overall

system performance of 2–3 GFLOPS for 768–1008 MicroB-

laze cores. Although Whetstone is not a realistic benchmark,

it is useful in noting the difference in performance between

the software-emulated and the hardware-accelerated FPUs.

In this test, it showed a speedup of 15 for scores of 200

KFLOPS and 3 MFLOPS, respectively.

We used the Netperf benchmark [12] to determine the

performance of the MicroBlaze-to-MicroBlaze network for

user code running under uClinux. Netperf tests bulk-transfer

throughput and round-trip response time using both TCP

and UDP. There is no significant variation in either through-

put or response time for the different link combinations for

single communicating pairs. On the other hand, as the pay-

load size grows, there is a clear increase in round-trip re-
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sponse time. This result suggest that the software overhead

of transmitting and receiving is dominating the effects of

latency in different links, even with the inter-board links

having a much greater latency than the intra-board links do.

Thus, there is an urgent need for a DMA-based network in-

terface and driver.

4.2. Cluster Connectivity

Each BEE2 has a 100 Mb Ethernet connection to a control-

network switch. This switch is also connected to a manage-

ment server, which stores the NFS file systems for both the

PowerPC and the MicroBlaze cores. Each PowerPC and Mi-

croBlaze core has an IP address on the control network and

can be accessed via SSH and TELNET, respectively. Pack-

ets are routed to and from the MicroBlaze cores by the Pow-

erPC cores. Additionally, all point-to-point links in the sys-

tem are instrumented using iptables rules that sample traf-

fic and forward it through IP-in-IP tunnels over the control

network. This traffic aggregates on the management server

and can be viewed in real-time using a modified version of

the EtherApe graphical network-traffic analyzer. The whole

cluster is located behind a NAT firewall and can be accessed

from the Internet.

Debugging is performed by connecting a Xilinx Paral-

lel Cable IV between the management server and the JTAG

header on a BEE2 module. Up to four modules can be

debugged simultaneously using either XMD or ChipScope,

given the parallel-port hardware and software limitations.

Serial console and monitor output from any one module are

also available. More scalable management capabilities are

currently being developed.

4.3. FPGA Implementation

A full 12-core RAMP Blue design consumes 32,991 slices

(99%), 61,891 LUTs (93%), 37,198 flip-flops (56%), and

181 block RAMs (55%). These results assume the follow-

ing processor options: 90 MHz core clock, no optional func-

tional units, all optional exceptions, 2 KB I-Cache, 8 KB

D-Cache, LMB block RAM, and OPB peripherals. The in-

frastructure consists of three DDR2 controllers, four XAUI

blocks, double-precision FPU, and 8-bit network buffers and

crossbar switch. Based on these results, we believe that

a configuration with 16 MicroBlaze cores and four DDR2

controllers is feasible with extensive optimizations.

4.4. Operating System, Software and Benchmarks

In RAMP Blue, uClinux, traditionally used in embedded

systems, must support software designed for large high-per-

formance computers. Fortunately, since uClinux maintains

almost all of the functionality of a traditional Linux kernel,

most software that runs on a normal Linux system also runs

on a uClinux system, given proper compiler and libraries.

4.4.1. UPC and GASNet

The most complex part of porting the UPC framework to

a new platform is ensuring that its communication layer,

Global-Address-Space Networking (GASNet) [13], works

properly with both the kernel and the underlying commu-

nication hardware. GASNet provides message-passing con-

duits implemented over specific networking hardware or ge-

neric UDP sockets, with RAMP Blue using the latter mech-

anism for simplicity. Future RAMP systems should gain

a significant amount of performance by implementing cus-

tom Remote DMA (RDMA) network hardware and a cor-

responding GASNet conduit. Such an implementation will

decouple computation and communication and eliminate the

overhead associated with the UDP/IP stack and uClinux net-

working.

4.4.2. NAS Parallel Benchmarks

The NAS Parallel Benchmarks are a standard benchmark

suite consisting of scientific code useful for measuring the

performance of message-passing systems. Due to memory

limitations, only class-S (sample) datasets can currently be

run on RAMP Blue. The next larger class uses more mem-

ory than is available, given the uClinux, UPC and NPB me-

mory-allocation details. The implementation used is based

on NPB 2.4, which is not optimized for a particular archi-

tecture [7].

The UPC implementation of NPB 2.4 consists of six

benchmarks: Embarrassingly Parallel (EP), Multi-grid (MG),

Conjugate Gradient (CG), Fast Fourier Transform (FT), In-

teger Sort (IS), and Block-Tridiagonal with I/O (BTIO). We

are currently able to run all of these except BTIO, with var-

ious restrictions on the number of threads due to benchmark

implementation details.

The execution time is currently dominated by communi-

cation costs, a large fraction of which can be eliminated by

implementing a DMA-based network interface. Therefore,

the current results should be considered a lower bound on

performance. Additionally, the primary goal of RAMP—

to provide a flexible platform for research in parallel ar-

chitectures and software—can be met using even medium-

performance hardware.

4.5. Bugs and Implementation Hurdles

In the course of implementing the RAMP Blue system, sev-

eral bugs and implementation hurdles came up, most sig-

nificantly due to the adoption of MicroBlaze. Several bugs

were found and fixed in both the MicroBlaze gateware and

the GCC and uClinux ports. The process of isolating these
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bugs was hindered by the lack of good debugging tools. Fu-

ture RAMP projects seeking to run off-the-shelf software

should leverage more robust compilers and operating sys-

tems or implement improved debugging capabilities.

5. CONCLUSION

The goal of RAMP Blue was to create a message-passing

multi-core system, capable of running off-the-shelf applica-

tions and scientific benchmarks, on the BEE2 platform. The

current implementation meets these goals. RAMP Blue is

currently able to run uClinux on 768–1008 independent Mi-

croBlaze cores on 16–21 BEE2 boards. The cores are able to

run the majority of the NAS Parallel Benchmarks and com-

pute accurate double-precision floating-point values.

The RAMP Blue project has also been useful in pushing

RAMP development and providing the following interesting

lessons.

• Analysis of the performance and resource usage of the

FPU showed that sharing a single FPU is essential and

unlikely to impact performance.

• Debugging infrastructure should be a first-class primi-

tive. Debugging RAMP Blue—a large and complicated

system—using existing debugging primitives proved to

be cumbersome.

• Built-in error checking and tests are essential, since vari-

ations in FPGA designs can expose bugs that occur only

with certain bitstreams and on certain boards.

• Gateware should be reusable, general-purpose and op-

timized for place-and-route, since the design-compile-

debug cycle for FPGAs is long.

Work is currently under way to implement various per-

formance enhancements suggested throughout this paper. A

parallel project has ported the entire RAMP Blue design to

RDL in order to separate the emulation of a multi-core archi-

tecture from the underlying FPGA implementation, as well

as improve parametrization and debugging support. A beta

release of this design is forthcoming.
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