
1

6/21/2006 RAMP Architecture, Language & Compiler 1

RAMP: Architecture, Language 
& Compiler

http://ramp.eecs.berkeley.edu
Greg Gibeling, Andrew Schultz & Krste Asanovic
gdgib@berkeley.edu
6/21/2006

6/21/2006 RAMP Architecture, Language & Compiler 2

Outline

� RAMP Architecture
� Target & Host Models
� RAMP Description Language
� RDLC2 Toolflow
� FLEET & P2 Applications
� Status & Future Work

� Including RCF

6/21/2006 RAMP Architecture, Language & Compiler 3

RAMP Architecture (1)

� A framework for system emulation
� Massively parallel (digital hardware) systems
� Orders magnitude performance enhancement
� Leverage existing designs
� Allow community development

� Share designs, validate experiments, etc…

� Flexible, cross platform designs
� Requires proper structure

� Support for automatic debugging
� Automatic glue logic/code generation

� Based on the “target model”

6/21/2006 RAMP Architecture, Language & Compiler 4

RAMP Architecture (2)

� Target
� The system being emulated

� Actually only a model of the system being emulated
� Can be a cycle accurate model

� Must conform to the RAMP target model
� Host

� The system doing the emulation
� May include multiple platforms

� Hardware – BEE2, XUP, CaLinx2
� Emulation – Matlab, ModelSim
� Software – C++, Java

6/21/2006 RAMP Architecture, Language & Compiler 5

RAMP Architecture (3)

� Fundamental Model
� Message passing
� Distributed event simulator
� Message passing system generator

� Cross platform
� Shared development effort
� Easy to develop, debug and analyze

� Similar Formalisms
� Petri Nets
� Process Networks
� Research: Click, P2, Ptolmey, Metropolis, etc….

6/21/2006 RAMP Architecture, Language & Compiler 6

RAMP Target Model (1)

� Units communicate 
over channels

� Units
� 10,000+ Gates

� Processor + L1
� Implemented in a “host”

language
� Channels

� Unidirectional
� Point-to-point
� FIFO semantics
� Delay Model



2

6/21/2006 RAMP Architecture, Language & Compiler 7

Target Model - Units

� Inside edge
� Ports connect units 

to channels
� FIFO signaling
� Hardware or 

Software

� Target cycle control
� __Start
� __Done
� Allows for variable 

timing, and timing 
accurate simulation

6/21/2006 RAMP Architecture, Language & Compiler 8

Target Model – Channel (1)

� Channel semantics
� Arbitrary message size

� The messages are statically typed

� Ordered delivery
� Debugging through monitoring & injection
� Provides for cross-platform simulations

6/21/2006 RAMP Architecture, Language & Compiler 9

Target Model – Channel (2)

� Channel Params
� Only used for timing 

accurate simulations
� Bitwidth
� Latency
� Buffering

� Fragments
� Smaller than messages
� Convey the simulation 

time through idles

�
��
�
��
��

6/21/2006 RAMP Architecture, Language & Compiler 10

Host Model

� �	

���

�������

������������

������

���	�������

������
���	�������

� �	

����

��������

������������

������

���	�������

������
���	�������

������

���	�������

�� �	�!

����
���

������
���	�������

�� �	�!

�"�
���

������
���	�������

#$���% �#	���	��&�'���

#$���(

�)��*+�'�	�,$�-�

�����#

���	������

��.���
/0�1� #$���2��� $����	��$��

� �	

���1

������1�

�� �	�!

��� ���
�����3

���	�������

�����4

���	�������

������������

������

���	�����#�

�����"

���	�����

��.���
5�'&"'

� Cross platform
� Units implemented 

in many languages
� Library units for I/O
� Links implement 

channels

� Links
� Any communication
� Less defined

6/21/2006 RAMP Architecture, Language & Compiler 11

Host Model – Wrapper

����

� �	

��

'$����

'$����

660�	�� 66�$��

'$����

'$����

��,,��7�

'	*�����.�

5�-���

��,,��7�

'	*�����.�

5�-���

5�-���7�

��
	*�����.�

��,,��

5�-���7�

��
	*�����.�

��,,��

0�	���.��$���$�

�
$
�
��$

��.
�0
�	
��
�

������ ������

"����������

������������

������������

"����������

������������

6/21/2006 RAMP Architecture, Language & Compiler 12

Host Model - Link

� Typically Three Components
� Packing & Unpacking
� Timing Model
� Physical Transport

� Generated by RDLC2 plugins



3

6/21/2006 RAMP Architecture, Language & Compiler 13

RDL (1)

� “RAMP Description Language”
� General message passing system description 

language
� “Netlisting” language

� Does NOT include leaf unit behavior

� Compiler is highly extensible
� Links
� Other toolflows
� External signals
� Memories, etc…

6/21/2006 RAMP Architecture, Language & Compiler 14

RDL (2)

� Why RDL?
� Allows specification of partitioning

� Regular communication
� Enables cross platform system design

� RDL is a research enabler
� Ties together EXISTING designs
� Allows sharing of work & results

� Saves a lot of work
� Complex interconnect is painful in HDLs

6/21/2006 RAMP Architecture, Language & Compiler 15

RDLC2 Toolflow (1)

�
$
�
��$
��.

�

0
�	
��
�

�
���

��
��

6/21/2006 RAMP Architecture, Language & Compiler 16

RDLC2 Toolflow (2)

� Help
� rdlc2 –help
� Explains 

commands
� Includes all 

the options

� GUI
� rdlc2 –gui
� Easy to use
� Includes error 

message 
display

6/21/2006 RAMP Architecture, Language & Compiler 17

FLEET Builder Application (1)

� FLEET
� A one instruction 

computer (Move)
� Highly concurrent
� Location and 

operation are tied
� Includes network 

builder
� Includes assembler 

generator

initial codebag Accumulate {

move (0) -> Adder.Adder;

move [] IntegerInput.Output

-> Adder.Addend;

move [] Adder.Sum -> 
Display.Input, Adder.Adder;

};

6/21/2006 RAMP Architecture, Language & Compiler 18

P2/Overlog Application

0
��
�
	
-
��
��
�� 
�
�$
�

/
$
�
�
�
�/
$
 
��
��
� 
���
�

�
� 
��
�
�

0
�	
*
��
5
$



�
$�
�
��
	
�	

)
�
8

0
�	
*�
�
��
�

�
$�
�
��
��
�

� Overlay Networks
� Overlog (datalog) 

spec is compiled as 
in a DB query 
planner

� Creates distributed 
tuple processors

� We did a hardware 
implementation

� Includes an ASIP



4

6/21/2006 RAMP Architecture, Language & Compiler 19

State of the Project (1)

� Working hardware
� Compiled RDL to Verilog

� FLEET Processor & Assembler Builder
� Implementation of P2 overlay network platform in hardware

� Tested on CaLinx2, XUP, Digilent S3 and ModelSim SE
� RDL Changes

� Added RDL Features
� Added higher order ports: struct, union and arrays
� Added compile time unit parameters
� Implemented hardware generators

� Similar in concept to Xilinx CoreGen
� Trivial lexical changes

� Required to support higher order ports and parameters

6/21/2006 RAMP Architecture, Language & Compiler 20

State of the Project (2)

� RDLC2
� Higher quality code base
� Automated Unit Testing
� Includes support for integrated tools (FLEET & P2)
� Production Ready

� Relatively narrow feature list (still a research project)
� Documentation is limited

� Languages
� Hardware – Verilog, VHDL on demand
� Software - Java & C++ waiting on RDLC3

� Back End Plugins
� XFlow, Impact, ModelSim
� Not XPS until RDLC3
� Include

6/21/2006 RAMP Architecture, Language & Compiler 21

Future Work (1)

� RDL & RDLC3 Features
� Parameter Inference Problems

� The algorithm isn’t always (easily) predictable
� Flesh out back end features

� More languages, platforms, links
� Debugging automation

� Automated test code generation for links and units

� Documentation
� Architecture, Language & Compiler Technical Report
� Complete compiler Javadocs
� Example and Tutorials

6/21/2006 RAMP Architecture, Language & Compiler 22

Future Work (2)

� ModelSim & XST workarounds
� HDL Subsets
� High level simulator

� Block Generators/Library
� Memories/FIFOs
� Easily extendible
� Not vendor specific

� Debugging Framework
� Integration with SW tools
� Injection & monitoring framework

6/21/2006 RAMP Architecture, Language & Compiler 23

RCF (1)

� RCF – RAMP Compiler Framework
� Motivation

� Current parser & lexers are limited/buggy
� Application Specific Compilers

� FLEET & P2 required compilers
� Need to integrate these with RDLC

� RDLC2 still includes a lot of copy & paste
� 150,000 lines of java code!
� Bad for maintenance and upgrades
� Hard (almost impossible) to fix parameter inference 

without changing the core algorithms

6/21/2006 RAMP Architecture, Language & Compiler 24

RCF (2)

� Compiler Compiler Interfaces
� Lex, Parse, Syntax Directed Translation and BURS tools
� High level specs -> Java based compilers
� Slow, reliable implementations (for now)

� OSGi – Like Framework
� Eases integration of application specific tools
� This is the basis of Eclipse (Don’t want to require Eclipse)

� RDLC3
� Final major version
� Will be based on RCF, reduces code size
� Should allow debugging, XPS and Eclipse integration
� Planned for release 10/2006 with full docs


