//,' N

RAMP: Architecture, Language
| & Compiler

http://ramp.eecs.berkeley.edu

Greg Gibeling (gdgib@berkeley.edu)

Andrew Schultz, Krste Asanovic & John Wawrzynek
1/11/2007

111112007 RAMP Architecture, Language & Compiler 1

Outline

Introduction

Target Model

Host Model

Practical Information
Status & Looking Ahead

1/11/2007 RAMP Architecture, Language & Compiler

[Quick Introduction to RDL

= The “RAMP Description Language” (RDL)
Hierarchical structural netlisting langauge
> Describes message passing distributed event simulations
> System level: contains no behavioral spec.
= Tradeoffs
o Costs
= Use of the RAMP target model
= Area, time and power to implement this model
> Benefits
= Abstraction of locality & timing of communications
= System debugging & power tools
= Determinism, sharing and research
> Goal: trade costs for benefits as needed

111112007 RAMP Architecture, Language & Gompiler

RAMP Vision

= FPGAs as a Research Platform
About 8 CPUs can fit in Field Programmable Gate Array
256-CPU system from ~32 FPGAs? (8 BEE2s)

= Architecture Reasearch community does logic design
Create out-of-the-box, massively parallel system

Processors, Caches, Coherency, Ethernet Interfaces, Switches,
Routers...

= RAMP: A framework for system emulation

Massively parallel digital hardware systems, orders magnitude
faster than software

Leverage existing designs and shared development among
researchers

= Flexible, cross platform designs
Requires proper structure
Based on the RDL “target model”

1/11/2007 RAMP Architecture, Language & Gompiler

[RAMP Architecture

RAMP Design Framework
= Target

o The system being emulated

o Must conform to the RAMP target model
= Host

o The system hosting the emulation

o May include multiple platforms

» Hardware — BEE3, BEE2, XUP, CaLinx2

= Emulation — Matlab, ModelSim
= Software — C++, Java

1/11/2007 RAMP Architecture, Language & Compiler

Target Model (1)

= Units communicate
over channels

= Units
10,000+ Gates
= Processor + L1
Implemented in a “host”
language

= Channels
Unidirectional
Point-to-point
FIFO semantics
Delay Model

1/11/2007 RAMP Architecture, Language & Compiler

Target Model (2)

= Insideedge TR
Ports connect units ~~_{_ e om
to channels . t
= FIFO signaling ¢ e i
= Hardware or T e ¢
Software Pot A Unit _cxenor
o Target cycle control > e
n Stal"t 41— _PB_READ Port"C i
= _ Done L1y _ereaov ‘
t\Pon "B "r
1/11/2007 RAMP Architecture, Language & Compiler 7

[Target Model (3)

= Channel Params

Only used for timing - - LT
accurate simulations g
Bitwidth -
FW Latency A }
Buffering Channel)
BW Latency

n Fragments
o Smallerthanmessages

Indivisible message
piece, which can be
carried by a channel

1/11/2007 RAMP Architecture, Language & Compiler 8

Target Model (4)

= Simple Example (More Later)
o Channel parameters <8, 2, 1, 3>
o A single 8bit Message

tagetcok [[2] [3] [4| [s] e [7] [e] [o] [
&b Message (4)
_ X WRITE
(' Fragment Buffering
X_READY 3Cycle BW Lateny _f
2Cycle FW Latency b Messabe (4)
__Y_READ
__Y_READY
__ReadDelay /
11172007 RAMP Architecture, Language & Compiler 9

[Target Model (5)

= Non-universal Model

o Busses, lossy channels, multicast networks
modeled as units

o No global reset
= Emulation & abstraction are not free
o Time, area and power are all spent
o Particularly noticeable for DSP or control-free
systems
= Existing Systems
o Can be used as a single unit
o May be split, but this will require design changes

1/11/2007 RAMP Architecture, Language & Compiler 10

Host Model (1)

Host a (Hardware/FPGA)

= Cross platform
o Units implemented
in many languages
Library units for /O
Links implement
channels
» Links
Any communication
o Less defined
o Plugins

[vibrary |

| (Misc. Platform

(Unit 3)

1/11/2007 RAMP Architecture, Language & Compiler 1

[Host Model (2)

Link A LinkC

Timing. Buffer,
Lnk Unpaciing & . Packng & | LnkD
Butr {Port B Port D Tiring
Wrapper
1/11/2007 RAMP Architecture, Language & Compiler 12

Host Model (3)

= Links - Typically Three Components
o Packing & Unpacking
o Timing Model
o Physical Transport

. Wrapper Message Register

RDLC Plugin Unpack Lo
Facking Logic

1/11/2007 RAMP Architecture, Language & Compiler 13

Host Model (4)

Terget Gk

_xwmre

X READY

¥ Ren>

¥ READY

Targe Gl

e UL L L L LrL L ey

X wRiE T

20—

1/11/2007 RAMP Architecture, Language & Compiler 14

RDL (1)

= “RAMP Description Language”
> General message passing system description language
> “Netlisting” language
Easy to describe or modify a system
Allows specification of partitioning
= Extensible Compiler
> Links & Languages
5> Plugins & Generators
= Simplified Design
Complex interconnect is painful in HDLs
> Advanced datatypes are usually not present in HDLs

111112007 RAMP Architecture, Language & Compiler 15

RDL (2)

= RDL Target Constructs
Channels, Messages and
Port types
Units include instances,
inputs, outputs and
connections

= RDL Host Constructs
One platform per board or

— —EhemetLink—

computer = Parameters

Platforms include an o Per-instance
implementation language o Compiled transparently to
Hierarchy allows for, eg. A output (e.g. Verilog)

board with many FPGAs Support inference (& unit

identity in RDLC3)

1/11/2007 RAMP Architecture, Language & Compiler 16

RDL Example (1)

unit <width = 32> {

input bit<1l> UpDown;
output bit<$width> Count;
} Counter;
1/11/2007 RAMP Architecture, Language & Compiler 17

RDL Example (2)

unit {
instance 0::Booleaninput BooleanInput(InChannel);
instance Counter<32> Counter;
instance |0::Display7Seg Display7Seg(.In(OutChannel));

channel InChannel { -> Counter.UpDown };
channel OutChannel { Counter.Count -> };
} CounterExample;

Ie N f y Ie hY

| | | | |

| | | | |

| | \UpDown | Value |

| i

| Boolean 3 Display |

O 2] comer [32F 528

| Value]] Count] I |

| | | | | |

‘) 1) i |
J N J

1/11/2007 RAMP Architecture, Language & Compiler 18

[RDL Example (3)

platform {
language “wverilog”;

plugin “Wirtex2ProEngine”<“AJ15”, “iostandard”,
“LVCMOS25"> Engine;

plugin “ModuleLibrary”<“ModuleLibrary.xml”>

[RDLCZ Toolflow (1)

«Unit shell, ready for implementation
eVerilog, Java, etc...

-0 =

S, ROLC(Shel)

«Flexible, extensible back end

+Support for multiple target languages : -
RoL Herrohcal Ntist | |8 e mpamentation Sanaara Compler
RDLC (Map)
> ©

=

1/11/2007 RAMP Architecture, Language & Compiler 20

Library;
} XUP;
map {
platform XUP BasePlatformInst;
unit CounterExample BaseUnitInst;
} XUPCounter;
1/11/2007 RAMP Architecture, Language & Compller 19
= Help T |
o rdlc2 —help kil
Explains ; o]
commands
Includes all | e
the options | T =
= GUI ot o [EPGRRARGSAE
o rdic2 —gui —
Easy to use =]
Includes error
message
display
111112007 RAMP Architecture, Language & Compiler 21

Advanced RDL (1)

777777 - = RDL in RDL
o Useful in complex
systems
m “Zero Delay”
Easy within FPGA

o Approximated with
a link implemented
in RDL

]

1/11/2007 RAMP Architecture, Language & Gompiler 22

[Advanced RDL (2)

= Debugging
Monitoring
= All communication is
over channels
= Real time can be
paused or slowed
down

Injection

= Greatly eases testing
= Fault Injection
Co-Simulation

90007 So5obt

1/11/2007 RAMP Architecture, Language & Compiler 2

Advanced RDL (3)

= Power Estimation
o Methodology
= Node activity determines power in CMOS
= Unit activity likely tracks node activity
o Implementation
= RDL to RDL transformation
= In system computation

1/11/2007 RAMP Architecture, Language & Compiler 2

[FLEET Builder Application

unit <IWidth> {
input Integer<$IWidth>
Unbores_sHipe Boces Adder;
input Integer<$IWidth>
Addend;
output Integer<$IWidth>
DataFumel Sum;

} Adder;

I unit {
input Instruction In;
output Operation[$NPorts]

out;
pm— plugin
enary "FLEET.HornBuilder"

NPorts> HornBuilder;
} InstructionHorn;

1/11/2007 RAMP Architecture, Language & Compiler 2

[P2/Over|og Application (1)

= Overlay Networks
o Overlog (datalog)
spec is compiled as
in a DB query
planner
Creates distributed
tuple processors
We did a hardware
implementation

o Includes an ASIP

1/11/2007 RAMP Architecture, Language & Compiler 2

Network Cloud

[P2/Over|og Application (2)

= TFP

o Parameterized
Tuple Field Proc.

o Includes hardware
builder
Includes auto-
generated
assembler
Simple stack
architecture

111112007 RAMP Architecture, Language & Gompiler 27

RAMP Blue Application (1)

Control
FPGA
ParleiLike PaalelLns

Py

User FPGA
MioBlaze = 15" ofa User FPGA)

1/11/2007 RAMP Architecture, Language & Gompiler 28

[RAMP Blue Application (2)

= RDL Related Lessons
o RDLC parser has poor error recovery
o Documentation incomplete
= Platform level hardware support
= Parameters & inference
o Project management
= Which compiler tool is “in charge”
o Big thanks to Jue Sun

1/11/2007 RAMP Architecture, Language & Compiler 2

Timeline

RAVP Retreat Retreat Ret

eat
]

- "

m }Q—RAMP Blue (RDL)

il

[N [-
ferorco
we

RDL Desig
;\\g‘\\g\\;‘\\g\\g‘\\g\\;\\
DLC1 RDLC2 RDLC3
Verilog & Java Output Verilog Output Verilog & Java Output
Single Platform Projects Multiple Platform Projects. Cross Platform Projects
Parameters Static & Dynamic Parameters
Advanced Data Types ‘Advanced Data Types
Plugins & Generators Plugins & Generators
Timing & Link Library
Debugging & Control
Improved Project Management
1/11/2007 RAMP Architecture, Language & Compiler 30

Conclusion

= Success
Compiled RDL to Verilog (and Java)
Tested on CaLinx2, XUP, Digilent S3 and ModelSim SE
= Language Changes in v2
Added RDL Features
Trivial lexical changes
= RDLC2
Generator plugins: FLEET & P2
Back end plugins: XFlow, Impact, ModelSim
Ready for widespread use
= RDLC3
Integration of RDLC2 with RCF libraries
RDL Debugging & RADTools
= Thanks
Andrew Schultz, Krste Asanovic & John Wawrzynek
Nathan Burkhart, Alex Krasnov & Jue Sun

1/11/2007 RAMP Architecture, Language & Compiler 31

Future Work

= RDL & RDLC3 Features
> Parameter Inference Problems
o Flesh out back end features
= More languages, platforms, links, timing
= Debugging automation
> Better project management
= Documentation
= Debugging & Power
o Major cross-platform design
o Based on RDL -> RDL Transformation
> Debugging, Monitoring and Visualization
> Distributed power calculations

1/11/2007 RAMP Architecture, Language & Compiler a2

An Open Call

= The need for users
o ~3 people here have really used RDL
o RAMP Blue & White are counting on it
o The final major version is in progress
= Requirements
o Actual hands-on experience
o Specific applications
o Specific requirements

111112007 RAMP Architecture, Language & Gompiler 3

Project Ideas

Language backends for RDLC3
Unit Generators
o Memory controller, network switch

o Should allow better parameterization (in many
ways)

= Port FLEET & P2 from RDLC2 to 3

= Processor Generators

= Multi-FPGA PAR

= Distributed Systems

= SimuLink/DSP Designs & Unit Library

