OpenSPARC T1 on Xilinx FPGAs – Updates

Thomas Thatcher
thomas.thatcher@sun.com
OpenSPARC Engineering

Paul Hartke
Paul.Hartke@Xilinx.Com
Xilinx University Program

RAMP Retreat – August 2008, Stanford
Agenda

• Quick OpenSPARC Overview
• Progress timeline
• Current Status
 > OpenSPARC T1 1.6 Release
 > OpenSPARC Book
 > OpenSPARC FPGA Board
 > Multi-core T1 design
 > T1 core on BEE3
• Roadmap
• Q & A
What is OpenSPARC?

- Open-Sourced versions of Sun's Microprocessor Products
 > RTL, Verification Env, documentation, system software
 > Available for download at www.opensparc.net

- Two Processors Available
 > OpenSPARC T1
 > 8 cores, 4 hardware threads per core
 > 1 floating-point unit external to core, shared by all cores
 > 4 banks of L2 cache
 > OpenSPARC T2
 > 8 cores, 8 hardware threads per core
 > Floating-point internal to core, one per core
 > 8 banks of L2 cache
OpenSPARC T1

- SPARC V9 implementation
- Eight cores, four threads each – 32 simultaneous threads
- All cores connect through a 134.4 GB/s crossbar switch
- High BW 12-way associative 3 MB on-chip L2 cache
- 4 DDR2 channels (23 GB/s)
- 70W power
- ~300M transistors
Sun/Xilinx Partnership: Big Goals

- Proliferation of OpenSPARC technology
- Proliferation of Xilinx FPGA technology
- Make OpenSPARC FPGA friendly
 > Create reference design with complete system functionality
 > Boot Solaris/Linux on the reference design
 > Open it up
 > Seed ideas in the community

Enable multi-core research
Timeline

July 06 Jan 07 June 07 Jan 08 Aug 08

OpenSPARC T1

Sun/Xilinx Collaboration Begins OpenSpARC T1 on ML411 board Stand-alone program under hypervisor OpenSolaris on ML411 board First ML505 Support

Today
New Developments

• OpenSPARC T1 1.6 Release
• OpenSPARC Book
• New OpenSPARC Development Kit
 > ML505 board with XC5VLX110T FPGA
• Multi-core Design
• OpenSPARC T1 core running on BEE3 Board
OpenSPARC T1 1.6 Release

• Released May, 2008
• Implementation of 4-thread T1 core on Virtex 5 FPGAs
 > ML505-V5LX110T board
 > EDK Project files (for EDK 9.2)
 > Scripts to run complete RTL regression on hardware
• Complete setup to boot Solaris
 > Networking support, including telnet and ftp
• Quick start ace files included
 > Creates an out-of-the-box experience
 > T1 core boots OpenSolaris in 30 minutes
Hardware Block Diagram

- SPARC T1 Core
- CCX-FSL Interface
- Processor-cache interface (PCX)
- Fast Simplex Links interface (FSL)
- FPGA Boundary
- MultiPort Memory Controller
- External DDR2 Dimm
- IBM Coreconnect OPB Bus
- MCH-OPB MemCon
- Microblaze Proc
- Microblaze Debug UART
- SPARC T1 UART
- 10/100 Ethernet
- Developed and Working
- Xilinx Embedded Developer's (EDK) Design

www.opensparc.net
Software Setup

• OpenSolaris is booted from a RAM disk Image
• Memory Allocation:
 > 1 MB used by Microblaze firmware
 > 1 MB used for OpenSPARC Boot PROM image
 > 80 MB for RAM disk image
 > Leaving 174 MB for OpenSPARC RAM
• Microblaze firmware does address translation to map SPARC addresses to board addresses.
OpenSPARC Development Kit

• A kit for OpenSPARC development now available
 > Board based on the ML505, but with an XC5VLX110T FPGA
 > Includes USB interface for FPGA programming
 > Tested with OpenSPARC T1 release 1.6 release design
 > Eliminates the need to buy a board and then upgrade the FPGA

• Shipping now!

• Kit Includes:
 > Board, with power supply and 256 MB DRAM
 > Platform USB download cable
 > Host to host SATA crossover cable
 > Compact flash card with OpenSPARC T1 1.6 ace files
Kit Contents

- Xilinx ML505-V5LX110T
- Platform USB programming cable
- 5V switching power supply
OpenSPARC Kit Donation Program

• Sun will donate OpenSPARC Development Kits to qualified universities
 > Web address below:

• See the web page for more details

• Also available from directly from Digilent
 > http://www.digilentinc.com

http://www.opensparc.net/edu/university-program.html
OpenSPARC Internals Book

• Covers both OpenSPARC T1 and T2
• Includes
 > Architectural Overview
 > Development environments for OpenSPARC
 > Source (RTL) code overview
 > Configuring, extending, and verifying OpenSPARC
 > Porting operating systems to OpenSPARC
• 350 Pages
• Available in both hardcopy (Amazon.com) and PDF format
• Sign-up sheet for early release PDF copy (by poster)
Implementing a Multi-core design

• We have created a multi-core system by interconnecting two boards.
 > Opens the door to multi-core designs on BEE3 board

• Uses Xilinx Aurora link-layer protocol running over RocketIO™ GTP serial tranceivers
 > Connected through the SATA connectors on the board

• Each GTP channel is 16 bits at 75 Mhz
 > Connected to Microblaze through an FSL FIFO
Multi-core System Block Diagram

- **SPARC T1 Core**
- **Microblaze Proc**
- **External DDR2 Dimm**
- **MemCon**
- **Microblaze Debug UART**
- **SPARC T1 UART**
- **Ethernet**
- **FPGA Boundary**
- **Xilinx CacheLink (XCL)**
- **Fast Simplex Links (FSL)**

- **Aurora over GTP**
- **FSL connected Aurora-over-GTP module to connect to other board**

- Developed and Working
- New

Notes:
- Aurora over GTP
- New features introduced
- Developed and working functionalities

RAMP Retreat-Aug 2008
Dual-core system implementation
Four-core system implementation

Master Node

SATA Cable

SMA cables
Initial Configuration

• Master FPGA hosts entire OpenSPARC Address space.
 > However, Each client MicroBlaze will run firmware code out of its own memory

• Both boards have the same bit file
 > Avoids need to develop and implement separate bit files
 > CPU ID set by DIP switches on the board

• However, software will be different for each board
 > Master software: services all memory requests
 > Slave software: only routes memory requests to the other board
OpenSPARC on the BEE3

- BEE3 board uses Virtex 5 FPGAs (same family as ML505)
- Re-implemented Release 1.6 design on BEE3
 > Very easy to re-target design.
 > Updated design to EDK 10.1
 > Re-implemented on both XC5VLX110T and XC5VLX155T
 > Generated ace files for BEE3 board
 > Verified OpenSolaris Boot
- Seamless and trouble-free porting experience
- Validated BEE3 board infrastructure
- Stop by to see our demo!
OpenSPARC on the Bee3 Details

• Single 4-thread OpenSPARC core
 – 62.5MHz OpenSPARC; 125MHz Microblaze
 – 6-LUTs: 59,350 / 97,280 61%
 – 36kbit BRAM: 147 / 212 69%
 – Ethernet in design but not tested
 – 1.5 hour implementation time

• EDK project based on Bee3 EDK reference design
 – Uses EDK MPMC4 and MIG
Bee3 OpenSPARC Four-Core System Diagram (Master-node Configuration)

- Master Node
- DDR2 DIMM0, DDR2 DIMM1, DDR2 DIMM2, DDR2 DIMM3
- User1, User2, User3, User4
- PCI-E 8X
- 5V LXT
- Ring Wiring CCX link
- QSH “cross-over” cable
- QSH-DP-040
- RJ45
- RAMP Retreat-Aug 2008
Bee3 Multi-core Node Block Diagram

Maintain compatibility between ml505_v5lx110t and Bee3 designs
Bee3 OpenSPARC Four-Core System Diagram (Full Mesh interconnect)

QSH “cross-over” board

Ring Wiring CCX link

Ring Wiring CCX link

Ring Wiring CCX link

QSH “cross-over” board
Bee3 OpenSPARC Eight-Core, Two-Board System Diagram

- Use Aurora over CX4 cables to connect “extended” four-core Bee3 board to “base” four-core Bee3 board.
 > Maintain native OpenSPARC T1 4-way L2 architecture
 > [Almost] full OpenSPARC T1 32-thread system!
Roadmap

• OpenSPARC T1 release 1.7
 > Setup to boot Ubuntu Linux
 > Update of EDK project to EDK 10.1
 > Improvements to memory controller
 > Improvements to place and route
 > Multi-core design

• Future Work (possible projects)
 > Connect T1 core directly to system
 > Increase size of L1 caches
 > Current size doesn't efficiently utilize the Block RAMs
 > Should be able to quadruple size without increasing logic
Summary

- OpenSPARC: The tools you need to do multi-core research!
 > Complete EDK project to implement a system
 > Implemented on both BEE3 board and OpenSPARC Kit
 > Complete verification environment
 > Complete software stack
 > OpenSolaris Boot demonstrated
 > Ubuntu Linux boot underway
OpenSPARC momentum

Innovation Happens Everywhere > 8400 downloads
Team

Ismet Bayraktaroglu

Thomas Thatcher

Durgam Vahia

Paul Hartke (Xilinx)

Not Pictured: Gopal Reddy