Brick and Mortar Silicon Manufacturing

Martha Mercaldi
Mark Oskin, Todd Austin, Karl Bohringer, Azita Emami

University of Washington, University of Michigan, Columbia University

January 11, 2007
Declining ASIC Starts

[DataQuest]
Cost of Production

- FPGA
- Standard Cell ASIC
Cost of Production

![Graph showing the cost of production for FPGA, Standard Cell ASIC, and Brick & Mortar Goal. The graph indicates that FPGA has the highest production cost, followed by Standard Cell ASIC, and then the Brick & Mortar Goal, which shows a lower and more stable cost.](www.edn.com)
System on Chip

- Assemble system out of pre-designed components
- Reduce design time
 - In 2004, one engineer costed $392,000 annually [www.design-reuse.com]
- Minimize bugs
 - Initial bugs can cost 50% of revenue [www.design-reuse.com]

PXA27X processor

[www.tomshardware.co.uk]
Brick and Mortar: Assembly

- Bricks -- ASIC chips

 - standard interface

 - implement standard functions

 - i.e., USB, VGA controller, ethernet NIC, PCI bridge, DMA, SRAM, 3DES, JPEG codec, RISC core
Brick and Mortar: Assembly
Brick and Mortar: Assembly
Brick and Mortar: Chip
Brick and Mortar: I/O Pads

- One surface covered with I/O pads
 - 25 um x 25 um / pad
 - 2.5 Gbps / pad
Brick and Mortar: I/O Cap Interconnect

- I/O cap -- ASIC chip implementing inter-brick interconnect
 - packet-switched network
- FPGA-like, island style configurable interconnect
Brick and Mortar: Multiple Brick Sizes
Brick and Mortar: Multiple Brick Sizes

<table>
<thead>
<tr>
<th>Function</th>
<th>Cite</th>
<th>Circuit Area (um²)</th>
<th>Max. Circuit Freq. (MHz)</th>
<th>Min. Perf. (Mbps)</th>
<th>0.25 mm² brick</th>
<th>1.0 mm² brick</th>
<th>4.0 mm² brick</th>
<th>Valid Freq. Range (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 1.1</td>
<td></td>
<td>2,201</td>
<td>2941</td>
<td>12</td>
<td>2 - 2941</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>PHYSICAL LAYER</td>
<td></td>
<td>2,614</td>
<td>1961</td>
<td>-</td>
<td>N/A - 1961</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>VITERBI</td>
<td></td>
<td>4,301</td>
<td>1219</td>
<td>-</td>
<td>N/A - 1046</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>VGA/LCD CONTROLLER</td>
<td></td>
<td>13,684</td>
<td>952</td>
<td>-</td>
<td>N/A - 843</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>WB DMA</td>
<td></td>
<td>13,684</td>
<td>952</td>
<td>-</td>
<td>N/A - 843</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>MEMORY CONTROLLER</td>
<td></td>
<td>29,338</td>
<td>1087</td>
<td>-</td>
<td>N/A - 843</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>TRI MODE ETHERNET</td>
<td></td>
<td>32,009</td>
<td>1087</td>
<td>-</td>
<td>N/A - 843</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>PCI BRIDGE</td>
<td></td>
<td>76,905</td>
<td>1087</td>
<td>-</td>
<td>N/A - 610</td>
<td>N/A - 1042</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>WB Switch (8 master, 16 slave)</td>
<td></td>
<td>85,758</td>
<td>1370</td>
<td>1000</td>
<td>16 - 1203</td>
<td>16 - 1370</td>
<td>16 - 1203</td>
<td></td>
</tr>
<tr>
<td>FPU</td>
<td></td>
<td>85,250</td>
<td>1515</td>
<td>-</td>
<td>N/A - 505</td>
<td>N/A - 1515</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>DES</td>
<td></td>
<td>85,758</td>
<td>1370</td>
<td>1000</td>
<td>16 - 1203</td>
<td>16 - 1370</td>
<td>16 - 1203</td>
<td></td>
</tr>
<tr>
<td>16K SRAM (Singleport)</td>
<td></td>
<td>195,360</td>
<td>2481</td>
<td>-</td>
<td>N/A - 2481</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>AHO-CORASIK STR. MATCH</td>
<td></td>
<td>201,553</td>
<td>2481</td>
<td>-</td>
<td>N/A - 1331</td>
<td>N/A - 2481</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>RISC CORE (NO FPU) / 6KCache</td>
<td></td>
<td>219,971</td>
<td>1087</td>
<td>-</td>
<td>N/A - 1087</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>6K SRAM (Dualport)</td>
<td></td>
<td>230,580</td>
<td>1988</td>
<td>-</td>
<td>N/A - 1988</td>
<td>No benefit</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>TRIPLE DES</td>
<td></td>
<td>290,075</td>
<td>1282</td>
<td>1000</td>
<td>No space</td>
<td>16 - 1282</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>FFT</td>
<td></td>
<td>390,145</td>
<td>1220</td>
<td>-</td>
<td>No space</td>
<td>N/A - 1220</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>JPEG DECODER</td>
<td></td>
<td>625,457</td>
<td>629</td>
<td>-</td>
<td>No space</td>
<td>N/A - 629</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>64K SRAM (Singleport)</td>
<td></td>
<td>682,336</td>
<td>2315</td>
<td>-</td>
<td>No space</td>
<td>N/A - 2315</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>32K SRAM (Dualport)</td>
<td></td>
<td>733,954</td>
<td>1842</td>
<td>-</td>
<td>No space</td>
<td>N/A - 1842</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>RISC CORE + 64K CACHE</td>
<td></td>
<td>864,017</td>
<td>1087</td>
<td>-</td>
<td>No space</td>
<td>N/A - 1087</td>
<td>No benefit</td>
<td></td>
</tr>
<tr>
<td>256K SRAM (Singleport)</td>
<td></td>
<td>2,729,544</td>
<td>2315</td>
<td>-</td>
<td>No space</td>
<td>No space</td>
<td>N/A - 2315</td>
<td></td>
</tr>
<tr>
<td>128K SRAM (Dualport)</td>
<td></td>
<td>2,935,817</td>
<td>2882</td>
<td>-</td>
<td>No space</td>
<td>No space</td>
<td>N/A - 2882</td>
<td></td>
</tr>
<tr>
<td>RISC CORE + 256K CACHE</td>
<td></td>
<td>3,111,025</td>
<td>1087</td>
<td>-</td>
<td>No space</td>
<td>No space</td>
<td>N/A - 1087</td>
<td></td>
</tr>
</tbody>
</table>
Advantages of Brick and Mortar

- Low manufacturing costs
 - no custom masks
 - small design & verification costs
 - low-cost assembly system (fluidic self assembly)
- ASIC-like degree of circuit integration
- Heterogeneous processes for bricks
- Exclude defective components from assembly
- Leverage process variation for high performance designs
Preliminary Performance Analysis

- Three, 16-way CMP designs
- Only 8% - 36% slowdown relative to ASIC
Why RAMP?

• Once a design has been tested and validated on RAMP platform

 • Less costly, per unit, than FPGAs (or boards)

 • Higher-speed than FPGAs
Conclusion

• Systems built out of ASIC bricks bonded to an interconnect ASIC

• A viable, low-cost technology if properly architected:
 • appropriate brick functions
 • general, flexible interconnect
 • efficient inter-ASIC communication
Questions & Discussion